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Abstract We present a comparison of three previously
published algorithms for optimising the minimum energy
crossing point between two Born–Oppenheimer electronic
states. The algorithms are implemented in a development ver-
sion of the MNDO electronic structure package for use with
semiempirical configuration interaction methods. The pen-
alty function method requires only the energies and gradients
of the states involved, whereas the gradient projection and
Lagrange–Newton methods also require the calculation of
non-adiabatic coupling terms. The performance of the algo-
rithms is measured against a set of well-known small mole-
cule conical intersections. The Lagrange–Newton method
is found to be the most efficient, with the projected gradi-
ent method also competitive. The penalty function method
can only be recommended for situations where non-adiabatic
coupling terms cannot be calculated.

Keywords Potential–energy surfaces · Conical
intersections · Optimization · Nonadiabatic coupling terms ·
Semiempirical methods

1 Introduction

The vital role that conical intersections play in many
photochemical processes is well-known [1,2]. A conical
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intersection occurs when the potential energy surfaces of
two or more adiabatic electronic states cross. If this region
is accessible to a chemical species in an upper state, then
an ultrafast radiationless transition to a lower state is possi-
ble. This phenomenon has been observed in systems ranging
from simple molecules to complex biological systems such
as the retinal chromophore in rhodopsin [3].

Conical intersections in polyatomic systems are multi-
dimensional seams rather than single points. The seam can
be characterised with a conical intersection optimisation,
which is used to find the minimum energy crossing point
(MECP) on the seam. This is not as straightforward as a
geometry optimisation on a single potential energy surface,
because the algorithm used must incorporate the constraint
that the states involved have the same energy. A variety
of approaches have been taken to accomplish this task
[4–12].

A conical intersection optimisation requires a balanced
description of the electronic structure of all the states
involved. Ab initio multi-reference methods such as
CASSCF or CASPT2 are widely used, but these are computa-
tionally expensive. Semiempirical configuration interaction
methods offer a lower cost alternative, while still taking into
account the correlation effects necessary to describe excited
states.

In this article, we present our implementation of three
previously published conical intersection optimisation algo-
rithms in a development version of the semiempirical MNDO
package [13]. Section 2 outlines the theoretical basis of the
algorithms and details of their implementation. The algo-
rithms are validated against several well-known small mole-
cule conical intersections in Sect. 3 and their performance is
discussed. Section 4 summarises our recommendations for
conical intersection optimisation.
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2 Theory and methods

The problem of finding a conical intersection between two
states is an example of an equality constrained optimisation
[14]

minimise E J

subject to E J − EI = 0 (1)

where EI is the energy of the lower state I and E J is the
energy of the upper state J . In fact, the function to be mini-
mised can be the energy of either of the states or the mean of
the two, because all of these quantities have the same value
at a point of conical intersection.

The points where the constraint is satisfied form a conical
intersection seam (also known as the intersection space). In
this work, we consider intersections between two states of
the same spin multiplicity, for which the seam is a hyperline
of (N − 2) dimensions, where N is the number of nuclear
coordinates. An MECP is a local minimum on the seam. The
degeneracy of the states is lifted by moving in the remaining
two directions, which define a plane called the branching
space. If the energy of the states is plotted against these two
directions, which we denote gI J and hI J , a double cone is
formed around the degeneracy, hence the name conical inter-
section.

The gradient difference vector gI J , is defined for a confi-
guration interaction (CI) wavefunction as

gqα

I J = C†
I
∂H
∂qα

CI − C†
J

∂H
∂qα

CJ (2)

where qα represents an individual nuclear coordinate, CI

are the CI coefficients of state I , and H is the CI electronic
Hamiltonian matrix. The gradient of the interstate coupling
hI J , is

hqα

I J = C†
I
∂H
∂qα

CJ (3)

This quantity is closely related to, but not the same as, the
non-adiabatic coupling vector [7]. gI J and hI J are central
quantities in two of the algorithms described below.

In the MNDO package, the CI wavefunctions are calcu-
lated from a semiempirical Hamiltonian using the GUGA-
CI formalism [15]. The quantity hI J is calculated using a
previously implemented semi-analytic gradient routine [16],
but with transition density matrices replacing standard den-
sity matrices according to the formulation of Lengsfield and
Yarkony [17].

2.1 Penalty function method

The method of Ciminelli et al. [10] is a penalty function
method, in which the constraint is enforced by adding a term

to the objective function that increases as the energy diffe-
rence between the states increases. No knowledge of hI J is
required. The form given in Ref. [10] is

f (R) = EI + E J

2
+ c1c2

2 ln

[
1 +

(
E J − EI

c2

)2
]

. (4)

The first term minimises the average of the lower and upper
state energies and the second term is the penalty function,
which minimises the energy difference. The constant c1 deter-
mines how much weight should be given to these two goals,
while c2 controls how quickly the conical intersection seam
is approached. The optimisation will not converge exactly to
a true constrained minimum unless c1 → ∞, but highly
distorted geometries on the seam can be reached if c1 is
too large, leading to optimisation failure. The recommen-
ded values from Ref. [10] are c1 = 5 (kcal mol−1)−1 and
c2 = 5 kcal mol−1.

The penalty function method is implemented in MNDO
using its standard quasi-Newton geometry optimisation rou-
tines, but with the ‘energy’ replaced by Eq. 4 and the ‘gradi-
ent’ replaced by the gradient of Eq. 4. The initial Hessian is
approximated as a diagonal matrix by finite difference of the
gradient and updated using the BFGS approximation [14].
Two minor modifications were required relating to tests for
resetting the Hessian. By default the Hessian is reset when the
objective function drops by more than 10 kcal mol−1. As the
value of Eq. 4 may change quite rapidly (at least as long as the
energy difference between states is significant), the threshold
was raised to 100 kcal mol−1. The Hessian is also normally
reset when the gradient vector and the line search direction
become too close to being orthogonal. However, this test had
to be removed as it hindered convergence towards the end of
the optimisation. Together these modifications greatly impro-
ved the performance of the penalty function method.

2.2 Gradient projection method

The method of Bearpark et al. [8] is a gradient projection
method. To enforce the constraint of Eq. 1, the energy diffe-
rence EI −E J is minimised in the branching space, while the
upper state energy E J is minimised in the intersection space
to find the MECP. This separation between the two objectives
of the optimisation avoids the problems associated with the
penalty function method.

Following Ref. [18], we define the gradient that minimises
the energy difference as

f1 = 2(EI − E J )
gI J

|gI J | . (5)

To minimise the upper state energy in the intersection space,
the upper state gradient must be projected into it. The inter-
section space is the orthogonal complement to the gI J , hI J
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plane, so the projection matrix P is defined as

P = I − g̃I J g̃†
I J − h̃I J h̃†

I J (6)

where g̃I J and h̃I J represent the branching space vectors
after orthonormalisation. The upper state gradient projection
is then

f2 = P
∂ E J

∂q
. (7)

The gradient to be minimised is the linear combination

g = c3 [c4f1 + (1 − c4)f2] (8)

where c3 > 0 and 0 < c4 ≤ 1. The value of c3 scales
the entire gradient, which is an indirect means of controlling
the step size calculated by the quasi-Newton procedure. This
means that g cannot be used as a measure of convergence
as the threshold will vary depending on the choice of c3.
Instead, we follow Ref. [18] and test for convergence against
the projected gradient f2. The value of c4 determines the
relative weight given to the two components of the gradient.
As the value of both components should be zero at the MECP,
the true minimum should be found no matter what value of
c4 is chosen (unlike the penalty function method). However,
the value chosen may slow or hinder convergence.

One limitation of the gradient projection method is that
the dimensions of the two components of the gradient do not
agree, and therefore there is no corresponding objective func-
tion to minimise [19]. This means that techniques which rely
on a well-defined objective function, such as a line search or
dynamic trust radius, cannot be used. Unfortunately, the full
quasi-Newton step can usually also not be used (until the
system is close to the constrained minimum), because the
quadratic approximation may not hold over the full distance
of the step and the approximate Hessian will be of relatively
poor quality (if the initial Hessian is a unit matrix).

Ref [18] overcomes this problem by using a combination
of the scale factor c3 = 0.01 and a static trust radius of 0.1 Å.
A weighting of c4 = 0.01 was used, which puts most of the
emphasis on minimising f2. In Ref [19], the Newton step is
simply scaled by a factor of 0.15. In our experience both of
these approaches are problematic. In the latter case, a sim-
ple scale factor on the Newton step slows convergence near
the constrained minimum, where the full Newton step could
safely be taken. This does not happen if the gradient is scaled
instead, because the Hessian is updated consistently with the
scaled gradient. In the former case, the static trust radius is
helpful, but the chosen scale factors do not perform well. In
particular, the optimisation would often fail to converge to a
constrained minimum due to the low value of c4.

In the standard MNDO quasi-Newton routine, the initial
inverse Hessian matrix B−1 is not a unit matrix, but is appro-
ximated as a diagonal matrix using a finite difference of the

gradient

B−1
αα = �qα

�gα

. (9)

The Hessian is therefore inversely proportional to the size
of the gradient. This means that any initial scaling of the
gradient using c3 is effectively cancelled out by the Hessian.
Fortunately, the improved quality of the Hessian means that
this scaling is not necessary anyway, so we use a nominal
value of c3 = 1.0. Again the Hessian is updated using the
BFGS formula.

The final parameter c4 is more important because the
weighting between the two components can strongly affect
the rate of convergence. If the gradient is too strongly weigh-
ted to minimising the energy difference, the geometry can
become highly distorted and the local minimum can become
unreachable (or the orbital tracking procedure can fail; see
Sect. 3). If it is too strongly weighted to minimising the exci-
ted state energy, the conical intersection may never be rea-
ched. In practice a value of c4 = 0.9 minimises convergence
problems. We did not choose to scale the Newton step for the
reasons outlined above, but a static trust radius of 0.1 Å was
applied.

2.3 Lagrange–Newton method

The method of Manaa and Yarkony [7] is a Lagrange–Newton
method. In this method at least two constraints are used. The
two mandatory constraints specify that at the point of conical
intersection,

EI − E J = 0 (10)

HI J ≡ C†
I HCJ = 0. (11)

The derivatives of these constraints correspond to gI J and
hI J , respectively. The constraints are enforced by associating
each with a Lagrange multiplier and finding the stationary
point of a Lagrangian function. In the original scheme, the
Lagrangian was

L I J (q, ξ ,λ) = EI + ξ1(EI − E J ) + ξ2 HI J +
M∑

i=1

λi Ki

(12)

The first term minimises the lower state energy, while the
second and third terms enforce the constraints of Eqs. 10 and
11. The final term in the Lagrangian is optional. It represents
M explicit geometrical constraints (for example, on bond
lengths or angles). These constraints have been implemented
in the MNDO program but are not considered in this work
as the other two algorithms do not support extra constraints.

By analogy to the Newton–Raphson method for uncons-
trained optimisation, the Lagrangian function is expanded to
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second order, giving⎡
⎢⎢⎣

∇∇L I J gI J hI J k
g†

I J 0 0 0
h†

I J 0 0 0
k† 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

δq
δξ1

δξ2

δλ

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

∇L I J

EI − E J

0
K

⎤
⎥⎥⎦ (13)

with the gradient of the Lagrangian

∇L I J = gI + ξ1gI J + ξ2hI J +
M∑

i=1

λi ki (14)

where the geometrical constraint gradients ki are defined as
in Ref. [7]. The equations are then solved for δq, δξ1, δξ2 and
δλ and iterated until convergence (tested against the norm of
the right hand side of Eq. 13).

This original method suffered from the problem that some
components of the Lagrangian gradient (gI , gI J , and hI J ) are
not slowly varying near the conical intersection seam. This
prevented an accurate calculation of the Hessian using stan-
dard finite difference techniques, or a reliable update using
BFGS or other quasi-Newton methods. This problem was
later solved by the introduction of ‘extrapolatable functi-
ons’ [20]. First, instead of minimising the lower state energy,
the mean energy of both states is minimised, giving the modi-
fied Lagrangian

L I J = EI + E J

2
+ ξ1(EI − E J ) + ξ2 HI J +

M∑
i=1

λi Ki (15)

with the gradient

∇L I J = gI + gJ

2
+ ξ1gI J + ξ2hI J +

M∑
i=1

λi ki (16)

Moreover, at a point on the seam (where EI − E J = 0), gI J

and hI J lose their meaning as independent variables. This is
because the degenerate wave functions of states I and J are
defined only up to a rotation among themselves. gI J and hI J

can therefore also be defined only up to a rotation, as[ 1
2 gI J,θ

hI J,θ

]
=

[
cos 2θ sin 2θ

− sin 2θ cos 2θ

] [ 1
2 gI J

hI J

]
(17)

As the seam is approached, the first two constraint terms
in Eq. 13 become equivalent because the energy difference
on the right hand side tends to zero. This means that any
gI J,θ , hI J,θ pair can be used in Eq. 16. In particular, the
vectors can be orthogonalised, which gives a new pair of
vectors which are slowly varying in the region of a conical
intersection. The value of θ for which 1

2 gI J,θ and hI J,θ are
orthogonal is given by [20]

tan 4θ = hI J · gI J

(hI J · hI J ) − 1
4 (gI J · gI J )

(18)

Eqs. 17 and 18 are used to generate the orthogonalised vectors
ḡI J and h̄I J , which replace gI J and hI J in Eq. 16 when the
optimiser reaches a point sufficiently close to the seam. In our
implementation, the orthogonalisation procedure is switched
on when the magnitude of the energy difference is below a
threshold of t1 = 10−4 kcal mol−1.

The orthogonalised vectors are unique up to transpositions
and sign changes (which can occur as more than one value
of θ satisfies Eq. 18). However, the vectors are only slowly
varying if transpositions and sign changes are identified and
reversed if necessary. In the MNDO implementation these
possibilities are tested with an overlap criterion between opti-
misation cycles. The residual energy difference on the right
hand side of Eq. 13 must also be taken into account. Con-
vergence is hindered unless the residual energy difference
is also transposed and has its sign changed along with the
vectors. Furthermore, the energy difference term should be
halved if it is transposed (this reflects the fact that 1

2 gI J is
used in Eq. 17).

The use of extrapolatable functions ensures that the
Hessian of the Lagrangian (∇∇L I J ) can be updated by
quasi-Newton methods, which use a finite difference of the
gradient between two geometry steps. Before the optimiser
reaches the threshold t1, the gradient difference and interstate
coupling gradient terms are excluded from this calculation
(because they are not orthogonalised and therefore not slowly
varying). The gradient difference used is then

δ∇L I J = δ

(
gI + gJ

2

)
+

M∑
i=1

λiδki . (19)

This finite difference is sufficiently accurate to find the coni-
cal intersection seam, but when the threshold t1 is reached, a
more accurate form is available

δ∇L I J = δ

(
gI + gJ

2

)
+ ξ1δḡI J + ξ2δh̄I J +

M∑
i=1

λiδki .

(20)

Note that the Lagrange multipliers in Eqs. 19 and 20 are those
of the current iteration.

In Ref. [20], the Hessian update algorithm of Murtagh
and Sargent [21] is recommended. This algorithm has been
implemented, but in practice the BFGS procedure was found
to be more efficient. The BFGS approximation always gives
a positive definite ∇∇L I J , but the overall Hessian has one
negative eigenvalue for each Lagrange multiplier.

In some cases, particularly when the conical intersection
seam is found quickly but the geometry is far from the MECP,
the energy difference may rise again to the point where Eq. 17
is no longer a reasonable approximation and the orthogonali-
sation procedure should be turned off again. We defined this
threshold as t2 = 1 kcal mol−1.
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Unlike the penalty function and gradient projection
methods, the Lagrange–Newton method cannot be trivially
incorporated into an existing optimisation routine. The
MNDO implementation is based on an existing Newton–
Raphson routine, but with modifications resulting from the
form of Eq. 13 and the determination of the Hessian as out-
lined above. Unlike the other methods, an inverse Hessian
cannot be used because of the need to explicitly insert values
for the rows and columns corresponding to the constraints in
Eq. 13. The computational cost of solving Eq. 13 scales as
N 3, compared to N 2 for the equivalent step with an inverse
Hessian. The initial Hessian is diagonal with empirical values
corresponding to bond lengths, angles and dihedral angles.
In our calculations, a static trust region of 0.1 Å is used.

3 Results and discussion

The three algorithms were validated using a set of 12
well-known conical intersections from ten molecules: the
aliphatic systems ethylene [22], butadiene [18,23], ketene
[24] and diazomethane [25,26]; the aromatic systems ben-
zene [8,27], azulene [28] and indacene [29]; and three small
retinal protonated Schiff base models: methaniminium [30],
penta-3,5-dieniminium [26,31] and 4-cis-γ -methylnona-2,4,
6,8-tetraeniminium [32]. In all cases the conical intersecti-
ons are between the ground state and the first excited singlet
state. In the case of butadiene three minima on the coni-
cal intersection seam were considered (s-cisoid, central, and

s-transoid). The conical intersection geometries are illustra-
ted in Fig. 1.

All calculations were carried out in internal coordina-
tes using the OM2 semiempirical Hamiltonian [33,34] and
GUGA configuration interaction. The SCF calculations were
performed in a restricted open-shell Hartree–Fock (ROHF)
formalism corresponding to a singlet excited state to avoid
convergence problems associated with restricted Hartree–
Fock (RHF) when there are two solutions very close in energy
(as is the case near a point of conical intersection). In each
case three reference configurations were used for the
configuration interaction procedure, corresponding to the clo-
sed shell ground state and to single and double HOMO–
LUMO excitations. All single and double excitations within
the active space from these references were included in the
calculations.

The active space was chosen in accordance with previous
studies, which for most of the molecules was the π -system
(or those orbitals with the most π character when at a distor-
ted geometry). Ethylene and the methaniminium cation also
include in the active space all occupied orbitals correspon-
ding to b2 character at the ground state minimum, and the
active spaces for ketene and diazomethane consisted of two
orbitals of b2 character and three (π ) orbitals of b1 character
at the ground state minimum. The orbitals were identified
at distorted geometries by inspection. The size of the active
spaces along with ROHF occupations are given in Table 1.

The orbitals in the active space were tracked by calcula-
ting the dot product between the orbital coefficients of the

Fig. 1 Geometries of the 12 conical intersections considered in this study. The geometries shown correspond to the minimum energy crossing
points found using the Lagrange–Newton algorithm
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Table 1 Number of optimisation cycles and computation times for the set of 12 conical intersection optimisations

System Active Start RMSD=0.01 Åe RMSD=0.001 Åe MECPf /kcal mol−1

Syma DOFb spacec RMSD/Åd Method Cycles Time/s Cycles Time/s EI E J �E

Ethylene C1 12 4-0′ 0.176 PF 26 0.6 35 0.8 121.70922 121.79149 0.08227

(twisted-pyramidal) GP 22 0.7 34 1.1 121.81800 121.81800 0.00000

LN 10 0.3 22 0.7 121.81800 121.81800 0.00000

Butadiene

s-cisoid C1 24 3-1′ 0.192 PF 86 7.1 116 9.4 121.93681 121.98372 0.04691

GP 15 1.9 19 2.4 121.98211 121.98211 0.00000

LN 16 1.9 20 2.4 121.98211 121.98211 0.00000

central C1 24 3-1′ 0.455 PF 143 11.6 165 13.3 121.69717 121.75675 0.05958

GP 39 4.6 48 5.6 121.76249 121.76249 0.00000

LN 26 3.0 33 3.8 121.76249 121.76249 0.00000

s-transoid C1 24 3-1′ 0.171 PF 65 5.5 76 6.4 119.00126 119.04762 0.04636

GP 25 3.0 31 3.6 119.04592 119.04593 0.00001

LN 19 2.2 102 11.5 119.04593 119.04593 0.00000

Ketene Cs 7 4-1′ 0.289 PF 28 0.7 29 0.8 31.27625 31.35757 0.08132

GP 18 0.5 23 0.7 31.38311 31.38312 0.00001

LN 12 0.4 16 0.5 31.38311 31.38311 0.00000

Diazomethane Cs 7 4-1′ 0.303 PF 34 0.9 35 1.0 85.60343 85.71396 0.11053

GP 20 0.7 24 0.8 85.78111 85.78112 0.00001

LN 14 0.5 18 0.6 85.78112 85.78112 0.00000

Benzene C1 30 4-2′ 0.133 PF 69 10.7 93 14.1 125.73100 125.76845 0.03745

GP 17 3.8 32 6.9 125.76374 125.76374 0.00000

LN 10 2.2 13 2.8 125.76374 125.76374 0.00000

Azulene Cs 33 6-4′ 0.064 PF 37 30.4 56 46.1 100.93902 101.09346 0.15444

GP 38 34.3 72 62.1 101.25496 101.25496 0.00000

LN 9 8.5 12 11.0 101.25496 101.25497 0.00001

Indacene Cs 37 7-5′ 0.045 PF 26 50.2 52 100.7 92.42268 92.57986 0.15718

GP 17 32.4 50 83.5 92.75017 92.75017 0.00000

LN 10 18.5 32 52.3 92.75017 92.75017 0.00000

Methaniminium C1 12 4-0′ 0.050 PF 50 1.3 54 1.4 246.62460 246.70463 0.08003

(twisted) GP 29 1.1 32 1.2 246.72870 246.72870 0.00000

LN 14 0.5 19 0.7 246.72870 246.72870 0.00000

Penta-3,5-dieniminium C1 36 4-2′ 0.111 PF 100 21.6 123 26.5 227.45363 227.50335 0.04972

GP 32 10.3 54 17.0 227.50331 227.50331 0.00000

LN 32 10.2 72 22.3 227.50331 227.50331 0.00000

Nonatetraeniminium C1 69 6-4′ 0.420 PF 214 292.7 239 326.5 225.21154 225.22774 0.01620

GP 135 239.3 151 266.4 225.22228 225.22229 0.00001

LN 52 90.8 58 101.0 225.22228 225.22228 0.00000

a Symmetry at which the optimisation was performed
b Number of degrees of freedom
c Number of occupied/unoccupied ROHF orbitals
d Root mean square deviation (RMSD) of the starting geometry from the final converged reference geometry after alignment
e Number of cycles and CPU time to reach the threshold RMSD calculated after alignment to the final converged reference geometry
f Heats of formation of the two states and their difference at the optimised minimum energy crossing point (MECP)
PF = penalty function, GP = gradient projection, LN = Lagrange–Newton
Computation times refer to one Intel Pentium 4-EM64T 3.40 GHz processor
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current optimisation cycle with those of the cycle before. If
any orbital in the active space could not be assigned with
a confidence of over 90% as measured by the dot product,
the step was rejected and a new step of half the distance was
taken. The rejected steps were not counted in the optimisation
cycle count. In general this procedure worked well, but the
orbital components can still change by up to 10% per step. As
conical intersections are usually found at distorted geome-
tries, the orbitals themselves can change significantly over
the course of the optimisation and this can lead to the wrong
orbital being tracked, particularly if orbital mixing occurs. It
was therefore important to confirm that the active space was
still appropriately chosen at the end of the optimisation.

The starting geometries were generated by first optimising
the ground state at the same level of theory and then applying
an appropriate distortion so that the nearest local minimum
would be the intended conical intersection. For example, the
starting geometry for the retinal models included an appro-
ximately 90◦ twist in the central double bond. This method
also avoided potential problems with orbital tracking when
a bond is twisted. However, for two systems this method
did not work. For butadiene, simply distorting the dihedral
angle of the ground state geometry by an appropriate amount
was not sufficient to ensure that the intended one out of the
three conical intersections was found. For benzene, an out-
of-plane distortion of one carbon atom was not sufficient to
prevent an orbital tracking failure when the more heavily
distorted conical intersection geometry was approached. In
both cases CASSCF optimised conical intersection geome-
tries were chosen as starting geometries [23,27]. Details of
the starting and final geometries used are provided in the
electronic supplementary material.

The results are presented in Table 1. The algorithms were
compared based on how quickly they attained a given level
of convergence. Unfortunately, because the gradients used in
the optimisation are defined very differently for each method,
they could not be used as a measure of convergence. The
final heats of formation could also not be used because the
penalty function method (with its default parameters) does
not converge exactly to the same minimum as the other two
methods. Therefore the only criterion that could be used to
measure convergence was the geometry itself. The number
of optimisation cycles and CPU time were recorded for each
algorithm to reach threshold root mean square deviations
(RMSDs) of 0.01 and 0.001 Å. For the gradient projection
and Lagrange–Newton methods, a cycle corresponds to one
geometry step, whereas for the penalty function method one
cycle is one line search. The RMSDs were calculated after
alignment using the algorithm of Refs. [35,36] with no mass
weighting. The reference structure used for the alignment
was an aligned average of the final converged structures of the
gradient projection and Lagrange–Newton methods, which

converged to within 10−5 kcal mol−1 of the true minimum
in all cases.

The precise number of cycles and timings recorded should
be treated with caution because differences in the details of
the implementations can have a significant effect on perfor-
mance. Nevertheless, the trend over the whole set of conical
intersections is clear. The results indicate that the Lagrange–
Newton algorithm is the most efficient overall, followed
closely by the gradient projection algorithm, with the pen-
alty function algorithm somewhat less efficient. There are
only two exceptions to this general trend, namely the butadi-
ene s-transoid and penta-3,5-dieniminium conical intersecti-
ons. In both cases the Lagrange–Newton method converges
to 0.01 Å quickly but takes longer than the other methods
to subsequently converge to 0.001 Å. This behaviour can be
attributed to the transition to extrapolatable functions, which
can occasionally disrupt the optimisation.

The penalty function method does not perform as well as
the other two methods, but it does have the advantage of sim-
plicity. In situations where the calculation of non-adiabatic
terms is impossible or not implemented, the penalty function
approach would be an adequate alternative. We have con-
firmed that the penalty function method converges towards
the true constrained minimum if the optimisation is re-run
starting from the previous converged geometry with a higher
value of c1. Therefore if more accurate convergence is requi-
red, the c1 parameter can be sequentially raised over two or
more optimisations, although this would obviously require a
greater overall number of optimisation cycles and CPU time.

The CPU timings indicate that the additional cost of calcu-
lating the gradient of the interstate coupling for the
Lagrange–Newton and gradient projection methods is out-
weighed by the additional cost in optimisation cycles for the
penalty function method. The N 3 step of solving Eq. 13 in
the Lagrange–Newton method also does not appear to affect
the timings significantly, at least for molecules of this size.
This may however become important when larger systems
are considered.

For all the molecules considered in the test set the appro-
ximate location of the conical intersection was known in
advance. For applications where this is not the case, a search
over a greater area of the potential energy surfaces would
be necessary and so the reliability of the orbital tracking
procedure would become more important. A general strat-
egy would start with a smaller active space, both to mini-
mise computational cost and because the tracking procedure
would then be more reliable. A common approach to loca-
ting accessible conical intersections is to follow the mini-
mum energy pathway on the excited state surface from the
Franck–Condon point. Conical intersections found in this
manner could then be re-optimised with a larger active space
from an improved starting geometry.
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4 Conclusions

Three previously published algorithms for conical intersec-
tion optimisation have been implemented in a development
version of the MNDO semiempirical electronic structure
program. Their performance was assessed over a set of 12
well-known small molecule conical intersections. The
Lagrange–Newton method was found to be the most efficient
in terms of optimisation cycles and CPU time, with the gradi-
ent projection method also competitive. The penalty function
method can only be recommended in situations where it is
not possible to calculate the non-adiabatic coupling terms.
It remains to be seen how the algorithms will perform for
conical intersections in larger systems. Future research will
consider the implementation of these algorithms in the con-
text of combined quantum mechanics/molecular mechanics
calculations.
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